dc.identifier.citation | ABUSHAHEEN, M. A. et al. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, v. 66, n. 6, p. 100971, jun. 2020. ADALVA LOPES MACHADO; RAYZA LIMA ARAÚJO; VIANA, Oscarina; et al. Resistência antimicrobiana em cepas de Escherichia coli isoladas de pescado marinho comercializado na feira livre do Mucuripe - Fortaleza-CE, Brasil. Boletim do Instituto de Pesca, v. 41, n. 4, p. 931–943, 2015. Disponível em: <https://institutodepesca.org/index.php/bip/article/view/1085>. Acesso em: 30 nov. 2022. AKPAKA, P. E. et al. Extended Spectrum Beta-Lactamase (ESBL) Produced by Gram-Negative Bacteria in Trinidad and Tobago. International Journal of Microbiology, v. 2021, p. e5582755, 24 ago. 2021. Disponivel em: https://www.hindawi.com/journals/ijmicro/2021/5582755/. Acesso em: 23 nov. 22. Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. Biochemistry, 53(10), 1565–1574. AMIN, Mohammed Badrul; SAHA, Sumita Rani; ISLAM, Md Rayhanul; et al. High prevalence of plasmid-mediated quinolone resistance (PMQR) among E. coli from aquatic environments in Bangladesh. PLOS ONE, v. 16, n. 12, p. e0261970, 2021. Disponível em: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261970#pone.02 61970.ref029>. Acesso em: 30 nov. 2022. Antimicrobial Resistance: A Primer. Medscape. Disponível em: <https://www.medscape.com/viewarticle/729196_2?reg=1>. Acesso em: 30 nov. 2022. Anvisa. ANTIMICROBIANOS - BASES TEÓRICAS E USO CLÍNICO. Disponível em: https://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_ web/modulo1/polimixinas.htm#:~:text=H%C3%A1%20duas%20polimixinas%20dispo n%C3%ADveis%20comercialmente>. Acesso em: 24 nov. 2022. ATASSI, Giancarlo; SCHEETZ, Marc; NOZICK, Sophia; et al. Genomics of Aminoglycoside Resistance in Pseudomonas aeruginosa Bloodstream Infections at a United States Academic Hospital. 2021. Disponível em: <https://www.medrxiv.org/content/10.1101/2021.01.15.21249897v1.full>. Acesso em: 30 nov. 2022. ASLAM, Bilal; KHURSHID, Mohsin; ARSHAD, Muhammad Imran; et al. Antibiotic Resistance: One Health One World Outlook. Frontiers in Cellular and Infection Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & MartinezUrtaza, J. (2019). Vibrio spp infections. Nature reviews. Disease primers, 5(1), 1-22. 26 BECKER, Bernd ; COOPER, Matthew A. Aminoglycoside Antibiotics in the 21st Century. ACS Chemical Biology, v. 8, n. 1, p. 105–115, 2012. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/23110460/>. Acesso em: 30 nov. 2022. Bertoncheli, Claudia de Mello e Hörner, Rosmari. Uma revisão sobre metalo-βlactamases. Revista Brasileira de Ciências Farmacêuticas [online]. 2008, v. 44, n. 4 [Acessado 25 Julho 2022], pp. 577-599. Disponível em: <https://doi.org/10.1590/S1516-93322008000400005>. Epub 27 Jan 2009. ISSN 1516-9332. https://doi.org/10.1590/S1516-93322008000400005. BI, Dexi; XIE, Yingzhou; TAI, Cui; et al. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene. PLOS ONE, v. 11, n. 2, p. e0148367, 2016. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/26841043/>. Acesso em: 30 nov. 2022. BRÍGIDA, Ana. As doenças infeciosas e a história dos antibióticos. Bdigital.ufp.pt, 2013. Disponível em: <https://bdigital.ufp.pt/handle/10284/5524>. Acesso em: 30 nov. 2022. BIRKETT, C.I.; D.A. ENOCH; LUDLAM, H.A. Non-fermentative Gram-negative bacteria. International Journal of Antimicrobial Agents, v. 29, p. S33–S41, 2007. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0924857907721763?via%3D ihub>. Acesso em: 30 nov. 2022. BUERIS, V. et al. Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. Scientific Reports, v. 12, n. 1, p. 5707, 5 abr. 2022. Disponível em: <https://www.nature.com/articles/s41598-022-09598-8>. Acesso em 10 de Out. 2022. Beta-lactam resistance in Escherichia coli: ESBL, AmpC and carbapenemases - Module G- specific resistances. Disponível em: <https://pt.coursera.org/lecture/antimicrobial-resistance/b C REYGAERT, Wanda. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, v. 4, n. 3, p. 482–501, 2018. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604941/>. Acesso em: 30 nov. 2022. Caniaux, I., van Belkum, A., Zambardi, G., Poirel, L., & Gros, M. F. (2016). MCR: modern colistin resistance. European Journal of Clinical Microbiology & Infectious Diseases, 36(3), 415–420. doi:10.1007/s10096-016-2846-y. Acesso em: 22 nov. 2022. CARVALHO, Y. N. T. DE. Avaliação do perfil de susceptibilidade de bacilos Gramnegativos isolados de cultura de vigilância ao imipenem e polimixina B. repositorio.ufrn.br, 19 abr. 2021. CERDEIRA, Louise; MONTE, Daniel F.M.; FUGA, Bruna; et al. Genomic insights of Klebsiella pneumoniae isolated from a native Amazonian fish reveal wide 27 resistome against heavy metals, disinfectants, and clinically relevant antibiotics. Genomics, v. 112, n. 6, p. 5143–5146, 2020. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/32916256/>. Acesso em: 30 nov. 2022. CHAGAS, T. P. G. Detecção de bactérias multirresistentes aos antimicrobianos em esgoto hospitalar no Rio de Janeiro. www.arca.fiocruz.br, 2011. CHRISTAKI, E.; MARCOU, M.; TOFARIDES, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 28 out. 2019. CLSI. Performance standards for antimicrobial susceptibility testing. In: CLSI Supplement M100, 32nd ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2022. CRECENCIO1, R. et al. RESISTÊNCIA ANTIMICROBIANA ASSOCIADA A PRESENÇA DE BETA- LACTAMASES DE ESPECTRO ESTENDIDO (ESBLs) EM ISOLADOS DE E. coli. [s.l: s.n.]. Disponível em: <https://www.udesc.br/arquivos/ceo/id_cpmenu/778/9__Mestrado_Zoo__Lenita_Stef ani__Regiane_Crecencio__SM_15190625152513_778.pdf>. Acesso em: 18 jul. 2022. DALMARCO, E. et al. Identificação Laboratorial de β-Lactamases de Espectro Estendido (ESBLs) - Revisão. RBAC, v. 38, n. 3, p. 171–177, 2006. DARPHORN, Tania S.; BEL, Keshia; KOENDERS-VAN SINT ANNELAND, Belinda B.; et al. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Scientific Reports, v. 11, n. 1, 2021. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/33483623/>. Acesso em: 30 nov. 2022. DE FREITAS, F.; NUNES, V. Universidade Federal Rural de Pernambuco Programa de Pós-Graduação em Ciência Animal Tropical SANIDADE DE OSTRAS (Crassostrea rhizophorae) CULTIVADAS NA RESERVA EXTRATIVISTA MARINHA BAÍA DO IGUAPE, BAHIA. [s.l: s.n.]. Disponível em: <http://www.tede2.ufrpe.br:8080/tede/bitstream/tede2/7310/2/Fernanda%20de%20Fr eitas%20Virginio%20Nunes.pdf>. Acesso em: 10 out. 2022. DEVER, L. A. Mechanisms of Bacterial Resistance to Antibiotics. Archives of Internal Medicine, v. 151, n. 5, p. 886, 1 maio 1991. Detecção de Resistência em Bacilos Gram-Negativos. [s.l: s.n.]. Disponível em: <http://brcast.org.br/wp-content/uploads/2019/10/BRCAST-MECANISMOS-DERESISTENCIA-GN-MACEIO.pdf>. DIGITAL, B. Cesan divulga regras para receber esgoto dos estabelecimentos de saúde. Disponível em: <https://www.cesan.com.br/noticias/cesan-divulga-regraspara-receber-esgoto-dos-estabelecimentos-de-saude/>. Acesso em: 18 jul. 2022. DISSE, M. A. SIMI. Segurança no Consumo de Moluscos Bivalves. Disponível em: <https://portalefood.com.br/artigos/seguranca-no-consumo-de-moluscos- 28 bivalves/#:~:text=O%20Brasil%20ocupa%20o%20segundo>. Acesso em: 10 out. 2022. DTHA. Ministério da Saúde. Disponível em: <https://www.gov.br/saude/ptbr/assuntos/saude-de-a-a-z/d/dtha>. Acesso em: 30 nov. 2022. ESCALANTE, E. et al. Phenotypic Detection of Plasmid-Mediated Colistin Resistance in Enterobacteriaceae. Disponível em: <https://journals.asm.org/doi/10.1128/JCM.01555-19?url_ver=Z39.88- 2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed#tab-citations>. Acesso em: 20 nov. 2022. FERNANDES, Miriam R.; ESPOSITO, Fernanda; SELLERA, Fábio P.; et al. ColistinResistant mcr-1 -Positive Escherichia coli on Public Beaches, an Infectious Threat Emerging in Recreational Waters. Antimicrobial Agents and Chemotherapy, v. 61, n. 7, 2017. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/28416556/>. Acesso em: 30 nov. 2022. FERNANDES, Miriam R.; MOURA, Quézia; SELLERA, Fábio P.; et al. Identification and genomic features of halotolerant extended-spectrum-β-lactamase (CTX-M)- producing Escherichia coli in urban-impacted coastal waters, Southeast Brazil. Marine Pollution Bulletin, v. 150, p. 110689, 2020. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31733900/>. Acesso em: 30 nov. 2022. FINGER, Jéssica A. F. F.; BARONI, Wilma S. G. V.; MAFFEI, Daniele F.; et al. Overview of Foodborne Disease Outbreaks in Brazil from 2000 to 2018. Foods, v. 8, n. 10, p. 434, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31547589/>. Acesso em: 30 nov. 2022. FURLAN, João Pedro Rueda; RAMOS, Micaela Santana; DOS SANTOS, Lucas David Rodrigues; et al. Appearance of mcr-9, blaKPC, cfr and other clinically relevant antimicrobial resistance genes in recreation waters and sands from urban beaches, Brazil. Marine Pollution Bulletin, v. 167, p. 112334, 2021. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/33839570/>. Acesso em: 30 nov. 2022. GIEDRAITIENĖ, A. et al. Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina, v. 47, n. 3, p. 19, 22 mar. 2011. Disponível em: https://www.mdpi .com/1648-9144/47/3/19. Acesso em: 23 nov. 22. GOLDBERG, Daphne W.; FERNANDES, Miriam R.; SELLERA, Fábio P.; et al. Genetic background of CTX‐M‐15‐producing Enterobacter hormaechei ST114 and Citrobacter freundii ST265 co‐infecting a free‐living green turtle ( Chelonia mydas ). Zoonoses and Public Health, v. 66, n. 5, p. 540–545, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30843359/>. Acesso em: 30 nov. 2022. GRAF, Fabrice E.; PALM, Martin; WARRINGER, Jonas; et al. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Development Research, v. 80, n. 1, p. 19–23, 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30343487/>. Acesso em: 30 nov. 2022. 29 GUIMARÃES, D. O.; MOMESSO, L. DA S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, v. 33, n. 3, p. 667–679, 2010. Disponível em: https://www.scielo.br/j/qn/a/dhKT3h4ZxxvsQdkzyZ4VnpB/?lang=pt#. Acesso em: 22 nov. 2022. GUTIÉRREZ RAMÍREZ, L. A.; MONTOYA, O. I.; VÉLEZ ZEA, J. M. Probióticos: uma alternativa de produção limpa e de substituição aos antibióticos promotores de crescimento na alimentação animal. Producción + Limpia, v. 8, n. 1, p. 135–146, 1 jan. 2013. Disponível em: http://www.scielo.org.co/scielo.php?pid=S1909- 04552013000100010&script=sci_abstract&tlng=pt HASSARD, Francis; SHARP, Jasmine H.; TAFT, Helen; et al. Critical Review on the Public Health Impact of Norovirus Contamination in Shellfish and the Environment: A UK Perspective. Food and Environmental Virology, v. 9, n. 2, p. 123–141, 2017. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/28176295/>. Acesso em: 30 nov. 2022. HENRIOT, Charles P; MARTAK, Daniel; CUENOT, Quentin; et al. Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli. FEMS Microbiology Ecology, v. 95, n. 8, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31234204/>. Acesso em: 30 nov. 2022. HOOPER, David C. ; JACOBY, George A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, v. 6, n. 9, p. a025320, 2016. Disponível em: <http://perspectivesinmedicine.cshlp.org/content/6/9/a025320.full>. Acesso em: 30 nov. 2022. IMRAN, Mohmmad; AHMAD, Mohammad Naiyaz; DASGUPTA, Arunava; et al. Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens. Future Medicinal Chemistry, v. 14, n. 15, p. 1133–1148, 2022. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/35861021/>. Acesso em: 30 nov. 2022. JACOBY, G. A. AmpC -Lactamases. Clinical Microbiology Reviews, v. 22, n. 1, p. 161–182, 1 jan. 2009. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19136439/. Acesso em: 23 nov. 22. JANAINA, C. et al. Revisão bibliográfica de antibióticos beta-lactâmicos. [s.l: s.n.]. Disponível em: <https://portal.unisepe.com.br/unifia/wpcontent/uploads/sites/10001/2019/10/085_Revis%C3%A3o-bibliogr%C3%A1fica-deantibi%C3%B3ticos-beta-lact%C3%A2micos-982-a-995.pdf>. JARLIER, V. et al. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis, v. 10, n. 4, p. 867-878, 1988. 30 Krumperman, P. H. (2018). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 84(5), e00277-18. LAGACÉ-WIENS, Philippe RS; NICHOL, Kim A; NICOLLE, Lindsay E; et al. ESBL Genotypes in Fluoroquinolone-Resistant and Fluoroquinolone-Susceptible ESBLProducingEscherichia coliUrinary Isolates in Manitoba. Canadian Journal of Infectious Diseases and Medical Microbiology, v. 18, n. 2, p. 133–137, 2007. Disponível em: <https://www.hindawi.com/journals/cjidmm/2007/848194/>. Acesso em: 30 nov. 2022. Laroche, E., Pawlak, B., Berthe, T., & Skurnik, D. (2021). The ocean as a source of antimicrobial resistance dissemination: A one health perspective. Marine drugs, 19(2), 89. LIMA, C. C.; BENJAMIM, S. C. C.; SANTOS, R. F. S. DOS. Mecanismo de resistência bacteriana frente aos fármacos: uma revisão. CuidArte, Enferm, p. 105–113, 2017. LOPATEK, Magdalena; WIECZOREK, Kinga ; OSEK, Jacek. Prevalence and Antimicrobial Resistance of Bacterial Foodborne Pathogens Isolated from Raw Bivalve Molluscs Subjected to Consumption in Poland during a Ten-Year Period. Foods, v. 11, n. 21, p. 3521, 2022. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/36360134/>. Acesso em: 30 nov. 2022. LV, B. et al. Vessel transport of antibiotic resistance genes across oceans and its implications for ballast water management. Chemosphere, v. 253, p. 126697, 1 ago. 2020. Manual pratico de analise de agua 2. [s.l: s.n.]. Disponível em: <http://www.funasa.gov.br/site/wpcontent/files_mf/manual_pratico_de_analise_de_agua_2.pdf>. Acesso em: 22 nov. 2022. MANUELA, A. Farmacologia dos antibióticos aminoglicosídeos. Bdigital.ufp.pt, 2017. Disponível em: https://bdigital.ufp.pt/handle/10284/6570. Acesso em: 22 nov. 2022. Marathe, N. P., Shetty, S. A., Shouche, Y. S., Larsson, D. G., & Flach, C. F. (2020). A framework for prioritizing and quantifying the risk of antibiotic resistance genes in food production systems. PLoS ONE, 15(4), e0232143. Mangiaterra, G., Cedraro, N., Citterio, B., Simoni, S., Vignaroli, C., & Biavasco, F. (2020). Diffusion and Characterization of Pseudomonas aeruginosa Aminoglycoside Resistance in an Italian Regional Cystic Fibrosis Centre. Advances in Experimental Medicine and Biology. doi:10.1007/5584_2020_570 MARIA, D. et al. THE INDISCRIMINATE USE OF ANTIBIOTICS: A NARRATIVE APPROACH TO LITERATURE. [s.l: s.n.]. Disponível em: <https://www.fvj.br/revista/wp-content/uploads/2019/11/2_IS_20181.pdf>. 31 MCEWEN, Scott A. ; COLLIGNON, Peter J. Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, v. 6, n. 2, 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/29600770/>. Acesso em: 30 nov. 2022. Mechanism of Quinolone Action and Resistance. ACS Publications. Disponível em: <https://pubs.acs.org/doi/full/10.1021/bi5000564>. Acesso em: 30 nov. 2022. Mendes, Carlos Alberto Caldeira e Burdmann, Emmanuel APolimixinas: revisão com ênfase na sua nefrotoxicidade. Revista da Associação Médica Brasileira [online]. 2009, v. 55, n. 6 [Acessado 22 Novembro 2022] , pp. 752-759. Disponível em: <https://doi.org/10.1590/S0104-42302009000600023>. Epub 25 Fev 2010. ISSN 1806-9282. https://doi.org/10.1590/S0104-42302009000600023. Acesso em: 22 nov. 2022. MENDES, R. E. et al. Metalo-beta-lactamases. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 42, n. 2, p. 103–113, abr. 2006. Disponível em: https://www.scielo.br/j/jbpml/a/BQBqSDGZx7GkGjChHb7w7pm/?lang=pt. Mendes, R. E., Jones, R. N., & Sader, H. S. (2009). Resistance surveillance program report for selected European nations (2005). Diagnostic Microbiology and Infectious Disease, 65(4), 390–399. MEURER, Rafael. Pesquisa de resistência aos antimicrobianos de enterobactérias isoladas em aves marinhas, no Sul do Brasil. Ufrgs.br, 2020. Disponível em: <https://www.lume.ufrgs.br/handle/10183/220522>. Acesso em: 30 nov. 2022. MICHALSKA, A. D. et al. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Brazilian Journal of Microbiology, v. 45, p. 1455–1458, 1 dez. 2014. Disponível em: https://www.scielo.br/j/bjm/a/VZKLW4RqPNxkxCrYbNyXPFc/?lang=en. Acesso em: 24 nov. 2022. Microbiology, v. 11, 2021. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/34900756/>. Acesso em: 30 nov. 2022. MOFFATT, Jennifer H.; HARPER, Marina ; BOYCE, John D. Mechanisms of Polymyxin Resistance. Advances in Experimental Medicine and Biology, p. 55–71, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31364071/>. Acesso em: 30 nov. 2022. Mohamudha, Parveen R., Harish, BN e Parija, SC. AmpC beta lactamases entre isolados clínicos Gram negativos de um hospital terciário, sul da Índia. Revista Brasileira de Microbiologia [online]. 2010, v. 41, n. 3 [Acessado em 18 de novembro de 2022], pp. 596-602. Disponível em: <https://doi.org/10.1590/S1517- 83822010000300009>. Epub 02 de junho de 2010. ISSN 1678-4405. https://doi.org/10.1590/S1517-83822010000300009. MONTE, D. F. et al. Genome Sequencing of an Escherichia coli Sequence Type 617 Strain Isolated from Beach Ghost Shrimp (Callichirus major) from a Heavily Polluted 32 Ecosystem Reveals a Wider Resistome against Heavy Metals and Antibiotics. Microbiology Resource Announcements, v. 8, n. 3, 17 jan. 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30687831/> Acesso: 10 out. 2022. MONTEZZI, Lara Feital; CAMPANA, Eloiza Helena; CORRÊA, Laís Lisboa; et al. Occurrence of carbapenemase-producing bacteria in coastal recreational waters. International Journal of Antimicrobial Agents, v. 45, n. 2, p. 174–177, 2015. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/25499185/>. Acesso em: 30 nov. 2022. MOSTEO, R.; GOÑI, P.; MIGUEL, N.; et al. Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses. Environmental Science and Pollution Research, v. 23, n. 2, p. 1833–1840, 2015. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/26400243/>. Acesso em: 30 nov. 2022. NAHAR, S. et al. Efficacy of flavourzyme against Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. International Journal of Food Microbiology, v. 336, p. 108897, 2 jan. 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0168160520303913?via%3Di hub. Acesso em 23 nov. 2022. NORBERG, Peter; BERGSTRÖM, Maria ; HERMANSSON, Malte. Complete Nucleotide Sequence and Analysis of Two Conjugative Broad Host Range Plasmids from a Marine Microbial Biofilm. PLOS ONE, v. 9, n. 3, p. e92321, 2014. Disponível em: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092321>. Acesso em: 30 nov. 2022. NOTA TÉCNICA GVIMS/GGTES/Anvisa No 08/2021 - Notificação dos Indicadores Nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência Microbiana (RM) – ano: 2022 — Português (Brasil). Disponível em: <https://www.gov.br/anvisa/ptbr/centraisdeconteudo/publicacoes/servicosdesaude/notas-tecnicas/nota-tecnicagvims-ggtes-anvisa-no-08-2021-notificacao-dos-indicadores-nacionais-dasinfeccoes-relacionadas-a-assistencia-a-saude-iras-e-resistencia-microbiana-rm2013-ano-2022/view>. Acesso em: 1 maio. 2022. OELSCHLAEGER, Peter. β-Lactamases: Sequence, Structure, Function, and Inhibition. Biomolecules, v. 11, n. 7, p. 986, 2021. Disponível em: <https://www.mdpi.com/2218-273X/11/7/986>. Acesso em: 30 nov. 2022. OLIVEIRA, Amanda M.S.; BARAÚNA, Rafael A.; MARCON, Davi J.; et al. Occurrence, antibiotic-resistance and virulence of E. coli strains isolated from mangrove oysters (Crassostrea gasar) farmed in estuaries of Amazonia. Marine Pollution Bulletin, v. 157, p. 111302, 2020. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/32658670/>. Acesso em: 30 nov. 2022. PALACIOS, Oskar A.; ADAME-GALLEGOS, Jaime Raúl; RIVERA-CHAVIRA, Blanca Estela; et al. Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance 33 Genes: Indicators of Contamination in Mangroves? Antibiotics, v. 10, n. 9, p. 1103, 2021. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/34572685/>. Acesso em: 30 nov. 2022. Past and Present Perspectives on β-Lactamases | Antimicrobial Agents and Chemotherapy. Antimicrobial Agents and Chemotherapy. Disponível em: <https://journals.asm.org/doi/10.1128/AAC.01076-18>. Acesso em: 30 nov. 2022. PEREIRA, Ingrid Cristine Guimarães et al. Ambiente marinho e resistência bacteriana aos antimicrobianos: impacto à saúde humana.. Acta Scientiae et Technicae, [S.l.], v. 7, n. 2, p. 65-80, jul. 2020. ISSN 2317-8957. Disponível em: <http://www.uezo.rj.gov.br/ojs/index.php/ast/article/view/281>. Acesso em: 26 jul. 2022. doi: https://doi.org/10.17648/uezo-ast-v7i2.281. POIREL, L.; CATTOIR, V.; NORDMANN, P. Is plasmid-mediated quinolone resistance a clinically significant problem? Clinical Microbiology and Infection, v. 14, n. 4, p. 295–297, abr. 2008. Disponivel em: https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)62799- 3/fulltext. Acesso em: 23 nov. 2022. Qualidade das águas das praias de Vitória. Disponível em: <https://www.vitoria.es.gov.br/balneabilidade.php#>. Acesso em: 18 jul. 2022. RAMIREZ, Maria S. ; TOLMASKY, Marcelo E. Aminoglycoside modifying enzymes. Drug Resistance Updates, v. 13, n. 6, p. 151–171, 2010. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/20833577/>. Acesso em: 30 nov. 2022. REDGRAVE, Liam S.; SUTTON, Sam B.; WEBBER, Mark A.; et al. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, v. 22, n. 8, p. 438–445, 2014. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0966842X14000894?casa_t oken=nsjNor4EhaUAAAAA:kh4XjH8SGAzBHKV2K26JGB9WUbTfEhCIACHOuY8u6 11UylurTfS5b_zpwe5BBM0f8e8Xg9VHSm-I>. Acesso em: 30 nov. 2022. Rhouma, M., Letellier, A., & Gaucher, M. L. (2021). Methods to detect antimicrobial resistance in pathogenic bacteria: A review. Journal of Microbiological Methods, 189, 106-120. SAMPAIO, J. L. M.; GALES, A. C. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Brazilian Journal of Microbiology, v. 47, p. 31–37, 1 dez. 2016. SANTOS, Neusa de Queiroz. A resistência bacteriana no contexto da infecção hospitalar. Texto & Contexto - Enfermagem [online]. 2004, v. 13, n. spe [Acessado 22 Novembro 2022] , pp. 64-70. Disponível em: <https://doi.org/10.1590/S0104- 07072004000500007>. Epub 28 Mar 2011. ISSN 1980-265X. https://doi.org/10.1590/S0104-07072004000500007. 34 SELLERA, Fábio P.; FERNANDES, Miriam R.; MOURA, Quézia; et al. Extendedspectrum-β-lactamase (CTX-M)-producing Escherichia coli in wild fishes from a polluted area in the Atlantic Coast of South America. Marine Pollution Bulletin, v. 135, p. 183–186, 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30301029/>. Acesso em: 30 nov. 2022. SHIMOHATA, Takaaki ; TAKAHASHI, Akira. Diarrhea induced by infection of Vibrio parahaemolyticus. The Journal of Medical Investigation, v. 57, n. 3,4, p. 179–182, 2010. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/20847516/>. Acesso em: 30 nov. 2022. SIMCOX, Lee J.; PEREIRA, Rui P. A.; WELLINGTON, Elizabeth M. H.; et al. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas aeruginosa Biofilm Formation. ACS Applied Materials & Interfaces, v. 11, n. 28, p. 25024–25033, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31260250/>. Acesso em: 30 nov. 2022. SOUZA, Jefferson de Freitas; FLAVIA RODRIGUES DIAS ; DE, Gerica. RESISTÊNCIA BACTERIANA AOS ANTIBIÓTICOS. Revista JRG de Estudos Acadêmicos, v. 5, n. 10, p. 281–293, 2022. Disponível em: <http://www.revistajrg.com/index.php/jrg/article/view/364>. Acesso em: 30 nov. 2022. SACRAMENTO, Andrey G.; FERNANDES, Miriam R.; SELLERA, Fábio P.; et al. Genomic analysis of MCR-1 and CTX-M-8 co-producing Escherichia coli ST58 isolated from a polluted mangrove ecosystem in Brazil. Journal of Global Antimicrobial Resistance, v. 15, p. 288–289, 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30404044/>. Acesso em: 30 nov. 2022. SERRA-BURRIEL, Miquel; KEYS, Matthew; CAMPILLO-ARTERO, Carlos; et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and metaanalysis. PLOS ONE, v. 15, n. 1, p. e0227139, 2020. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31923281/>. Acesso em: 30 nov. 2022. SIM, Choon K.; KASHAF, Sara Saheb; STACY, Apollo; et al. A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. Microbiome, v. 10, n. 1, 2022. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/35272717/>. Acesso em: 30 nov. 2022. SIMCOX, Lee J.; PEREIRA, Rui P. A.; WELLINGTON, Elizabeth M. H.; et al. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas aeruginosa Biofilm Formation. ACS Applied Materials & Interfaces, v. 11, n. 28, p. 25024–25033, 2019. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/31260250/>. Acesso em: 30 nov. 2022. SILVA, Quezia. Resistência bacteriana a antimicrobianos em uma comunidade remota da floresta amazônica. [s.l: s.n.]. Disponível em: <https://www.teses.usp.br/teses/disponiveis/42/42132/tde-19022018- 113736/publico/QueziaMouradaSilva_Doutorado_I.pdf>. Acesso em: 1 maio. 2022. 35 Silva, Rafael Almeida da et al. Resistência a Antimicrobianos: a formulação da resposta no âmbito da saúde global. Saúde em Debate [online]. v. 44, n. 126 [Acessado 10 Junho 2022] , pp. 607-623. Disponível em: <https://doi.org/10.1590/0103-1104202012602>. ISSN 2358-2898. https://doi.org/10.1590/0103-1104202012602. TAMMA, Pranita D; AITKEN, Samuel L; BONOMO, Robert A; et al. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clinical Infectious Diseases, v. 72, n. 7, p. e169– e183, 2020. Disponível em: <https://academic.oup.com/cid/article/72/7/e169/5940736?login=false>. Acesso em: 30 nov. 2022. Urtuvia, V., Maturana, N., Acevedo, F., Peña, C., & Díaz-Barrera, A. (2019). Antimicrobial alternatives for food-producing animals. Microorganisms, 7(3), 69. Varges, R., Araújo, P. R., de Sousa, O. V., & Sousa, J. R. (2022). Detection and molecular characterization of multidrug-resistant bacteria in food. Frontiers in Microbiology, 13, 818. VASOO, Shawn; BARRETO, Jason N. ; TOSH, Pritish K. Emerging Issues in GramNegative Bacterial Resistance. Mayo Clinic Proceedings, v. 90, n. 3, p. 395–403, 2015. Disponível em: <https://www.mayoclinicproceedings.org/article/S0025- 6196(14)01078-7/fulltext>. Acesso em: 30 nov. 2022. VEIGA, R. P.; PAIVA, J.-A. Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Critical Care, v. 22, n. 1, 24 set. 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30244674/. Acesso em: 23 nov. 22. WASIŃSKI, B. Extra-intestinal pathogenic Escherichia coli – threat connected with food-borne infections. Annals of Agricultural and Environmental Medicine, v. 26, n. 4, p. 532–537, 19 dez. 2019. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31885224/. Acesso em/; 23 nov. 2022. WERTH, B. J. Visão geral de bactérias. Disponível em: <https://www.msdmanuals.com/pt-br/profissional/doen%C3%A7asinfecciosas/bact%C3%A9rias-e-f%C3%A1rmacos-antibacterianos/vis%C3%A3ogeral-de-bact%C3%A9rias>. Acesso em: 22 nov. 2022. WORLD HEALTH ORGANISATION. Antimicrobial resistance. Disponível em: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. XU, Z. et al. Effect of aminoglycosides on the pathogenic characteristics of microbiology. Microbial Pathogenesis, v. 113, p. 357–364, dez. 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28867624/. Acesso em: 23 nov. 2022. 36 YANG, Qiwen; POGUE, Jason M.; LI, Zekun; et al. Agents of Last Resort. Infectious Disease Clinics of North America, v. 34, n. 4, p. 723–750, 2020. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/33011049/>. Acesso em: 30 nov. 2022. | pt_BR |
Redes Sociais