A novel cascaded multilevel converter topology based on three-phase cells
tese_doutorado
RESUMO: Devido às características estruturais das redes elétricas modernas, a utilização de equipamentos baseados em eletrônica de potência para garantir seu perfeito funcionamento tem crescido fortemente, incentivando o estudo e desenvolvimento de equipamentos baseados nessas tecnologias como conversores multinível. Os conversores multiníveis baseados em células em H bridge, conhecidos na literatura como CHB (Cascaded H bridge Converter) são os que mais se destacam nesta categoria de conversores, porém, a comutação natural do CHB multinível em configurações específicas, como em back-to-back (CHB-B2B), apresenta vários estados de curto-circuito, tornando seu desempenho inviável ou limitante. Este tipo de operação pode requerer estágios adicionais de isolamento, aumentando seu custo de implantação e reduzindo sua competitividade. Assim, este trabalho propõe uma nova topologia de conversor multinível baseada em células em H bridge, sem estágios de isolamento, com características trifásicas e superioridade em algumas métricas em relação a um CHB de mesmas especificações. Também apresenta menor número de componentes, menor custo de construção e desempenho semelhante. Esta nova topologia, denominada SDC-CHB (Cascaded H Bridge Converter with Single DClink), também apresenta vários estados de curto-circuito, bem como o CHB. No entanto, o uso da teoria dos grafos e do controle preditivo baseado em modelo (MPC – Model Predictive Control) possibilita a inibição dos estágios de curto-circuito inerentes ao SDC-CHB. Este trabalho também se dedica ao estudo matemático e ao mapeamento dos estados de curtocircuito do SDC-CHB em uma aplicação de eletrônica de potência como o STATCOM, e à comparação do desempenho deste dispositivo utilizando um conversor CHB com características semelhantes. Para validar a proposta, esta topologia foi submetida a simulações no software Simulink Matlab® para análise de dados e implementada em plataforma de tempo real hardware-in-the loop (HIL) do fabricante OPAL-RT, modelo 5700, para comprovar sua aplicabilidade. Para análise do rendimento do conversor, foram efetuadas medições das perdas por condutividade e chaveamento através do software PLECS® da empresa Plexim, onde pode-se observar o gasto energético do conversor nos diferentes modos de operação.
ABSTRACT: Due to the structural characteristics of modern electrical grids, the use of equipment based on power electronics to guarantee its perfect functioning has grown sharply, encouraging the study and development of equipment based on these technologies like converters with multiple voltage levels, known in the literature as multilevel converters. Multilevel converters based on H bridge cells, known in the literature as CHB (Cascaded H bridge Converter) are the most outstanding among this converters category, however, the natural switching of the multilevel CHB converter in specific configurations, such as a backto-back connection (CHB-B2B), presents several short-circuit states, making its performance unfeasible or limiting. This issue may require additional stages of isolation, increasing its implementation cost and reducing its competitiveness. Under these circumstances, this work proposes a new multilevel converter topology based on H bridge cells, without isolation stages, with three-phase characteristics and superiority in some metrics compared to a CHB of the same specifications. It also has a lower number of components, lower construction cost, and similar performance. This newly proposed topology, named SDC-CHB (Cascaded H Bridge Converter with Single DC-link), also features several short-circuit states as well as CHB. However, the use of graph theory and model-based predictive control (MPC) enables the inhibition of the short-circuit stages inherent to the SDC-CHB topology. This work is also dedicated to the mathematic study and the mapping of the SDC-CHB short circuit states in a STATCOM as a power electronic application, and comparing its performance with this device using a CHB converter with similar characteristics. This topology was subjected to simulations in Simulink Matlab® software for data analysis and later implemented on a hardware-in-the-loop (HIL) real-time platform from the manufacturer OPAL-RT, model 5700, to prove its applicability and to validate the proposal. To analyze the efficiency of the converter, measurements of losses by conductivity and switching were carried out using the PLECS® Plexim software, where the energy consumption of the converter in different modes of operation can be observed.
Redes Sociais